
Theoret. chim. Acta (Berl.) 28, 235--239 (1973) 
�9 by Springer-Verlag 1973 

On Asymptotic Calculation of the Exchange Interaction 
E. A. Andreev 

Institute of Chemical Physics, Academy of Sciences, Moscow 

Received May 30, 1972 

The asymptotic calculation of the exchange interaction between two atoms with the same ioni- 
zation potentials is carried out. It is established that the second term (of relative order R -1/2) of the 
asymptotic series becomes zero. The dependence of the atom-molecule exchange interaction on vibra- 
tional coordinates is also discussed. 

Die Austauschwechselwirkung zwischen zwei Atomen mit gleichem Ionisationspotential wird 
asymptotisch berechnet. Es wird gezeigt, dab der zweite Term (yon der relativen Ordnung R -1/2) 
der asymptotischen Reihe verschwindet. Die AbNingigkeit der Atom-Molekiil-Austauschwechsel- 
wirkung yon den Schwingungskoordinaten wird ebenfalls diskutiert. 

The total interaction between atoms and molecules at large distances con- 
sists of multipole and exchange terms. General expression for multipole inter- 
action are well known (see, for example, Ref. [1]). As for exchange interaction, 
Gor'kov and Pitaevsky [2] and Herring and Flicker [3-1 considered the hydrogen 
molecule and showed that the Heitler-London approximation is inadequate at 
large interatomic distances R. They introduced the asymptotic method of cal- 
culation of the splitting between the lowest singlet and triplet states (due to 
exchange interaction) of the H 2 molecule. We shall discuss the conditions of 
validity of this method and also the results of later works. 

Consider two one-electron atoms whose nuclei are at the points + a and - a 
of the z-axis. Let the atoms have the same ionization potentials, equal to c~z/21 
The asymptotic behaviour of the electron wave functions is given by Ref. [4] as 

! 
~;o =A•  I~'T- al ~ exp(-c~ I~'-Y- @.  (1) 

We shall calculate the first two terms of the asymptotic series for the splitting 
between the singlet and triplet states, described respectively by the wave functions 
~vs(Tx, 72) and ~vt(~x, r'2). We have 

H tps, t = Es, t ~Ps,t (2) 

where (when [Zl[ and Iz21 ~ a ,  and 01 and 02 ~ 1/~, z and O-cylindrical coordinates, 
a ~  oo; see also Ref. [2]) 

1 1 1 1 1 1 1 1 
n ~ - - 2 h ~  - 2  A2 I~x+a7 1~'2+~ I~l-ffl 1~,2_a7 F + 2 a a  (3) F12 

1 Atomic units are used. 
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lps + lpt lps -- lpt 

,pl = 1/5 , ~ -  1/2 , ~ (71 ,7~)=~1(7~ ,70  
(4) 

where, for instance, ~Pl corresponds  to the state when the first electron is localized 
at the a tom " - a " ,  and the second one - at the a tom " +  a". Then  [2] 

0 
A E = E t - E ~ = - 4 q ~ p 2 ~ z l  ~plds (5) 

where S is the surface z 1 = z 2. 
Consider  firstly the hamil tonian  

/-t = H - 1 (6)  
r12 

The corresponding localized wave functions ~x and /P2 do not  strongly differ 
f rom atomic ones and can be determined by analogy with Ref. [-5] and [-2] 

v~; (71,72) = f l  ~P~ + a3 ~p~ (71 - a*) = f l  ~p~ (7) 

U~2(~l, ~2) = f21pO(~2 "-1- ~ / p O  (71 __ a~ = f21P~ , (8) 

[_2a(2a- lzl +_ z21) tl/~ ( 2a + zl - ze -  lzl + zz[ ) 
fl  = [ (a_zl)(a+z2) exp - -4~aa - ' (9) 

f W 1 , 7 9  = f~(7:, 70. (lO) 

The following terms of asymptot ic  series for f l  and f2 have the relative order  1/R. 
The main cont r ibut ion  to the integral (5) comes from the region e(17-dl  

+ 17+ a~ - 2a) ~ 1 - an oblong ellipsoid of revolut ion in the coordinate  space 
of  each electron. In this region 

1 
~po (1) ~po (2) -~ A_ A+ [(a + za) (a -- z2)] -;-a 

.exp{- [2a+zl-z2+ 02 Q22 -]~ (11) 
2(a + zl) + 2 ( a -  z2) JJ 

L e t  ~12 = ~1 - Q2, ~ = 01 -[- ~2,  z12 = z1 - z2 a n d  

//)1 = ~ 1 ~ 1 ;  IP2 ~--- Z2/~)2, Z2(~1, F2) = Z1(~2, 71) 02) 

We have the following equat ion  for X1 

( 1) __312_ 2 [71 1~1 1712+ Z l = 0  (13) 
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o r  

(Ht +H2)z~ = 0 ;  H2=H'+H",  (14) 

(3 1 
H1 = 2e~-12oz + --,r12 (15) 

H'  = - A 12, (16) 

[ 012 -]- 0 COS (~0 012 -- 0 COS(~ ] 8 (17) 
n"=2 L + 4(a-z2)  Q12 ' 

where q~ is the angle between ( and 512" 
The first approximation for Z1 is obtained by solving the equation HIZ = 0. 

To obtain the second approximation (whose relative order is R-1/2 [3]) we must 
take into account H2. Note that we neglected the derivates (3/~, as the first 
term g of gl does not depend on 0 [2]. 

If we put Zl = Z + z, then we obtain 

H~z = - (H' + H") Z (18) 

- a linear differential equation for x. Therefore 

x = x' + x" (19) 
where 

nl~r  = - H ' z ;  H l ~ "  = - n "  x (20) 

Take firstly into account the terms/-/1 and H'  of the total hamiltonian. Then 
we find x' and (at the same time) obtain the correct behaviour of Xt when r12--*0. 

~3 Z ' 1 
-- - - X ' = 0 ;  Z ' = Z + x '  (21) A12Z'- 2~ 0z12 r12 

This equation can be solved by introducing parabolic coordinates (then the 
variables are separated), but one can use the analogy of the problem of scattering 
in the Coulomb field 1-5] with wave number k = ia. A solution, satisfying the 
boundary conditions (~1~1 when z 1 ~ - a  or z2~a ) has the following form 

X'= F ( l + l / 2 ~ )  ( 1 , ) z l + z 2  (22) 
- S g  ; z -  

where ~b is a confluent hypergeometric function. The first term of expansion (22) 
(when Izl,21 ,-~ a, 01,2 "~ I/a, a ~  ~ )  gives the result obtained in Ref. [2, 3J and the 
second term gives x'. 

Consider now the terms H 1 and H" together. One can obtain by analogy 
with Ref. [3] 

i f =  e x p ( -  1 S 1 ) ;  Z " = Z + W  (23) 

The expression for S~ is very unwieldy (see Ref. I-3]). The expansion of S~ in 
series gives 

Z" [r lz-Z1211/:~[1-ao2:-zo120c~ ] 
= [ ~ ]  [- 4 ~ - ~  z ~  (~-12 ~ - 1 2 )  + "'" " (24) 
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On the surface 8(Z12 = 0) 

0 , ,  1 a ,.z cos l 
)~1 ~ - 4(a_--lz]) 1+  4o~301 ~ ~(~ i2~f f~  -j. (25) 

So we have 

A E = 8  I o d z I I  dold~2fl f2zzq~~ )~I ~-Z1 -t-lpl ~Zl Jzl=z2=z" (26) 

By integrating (26) over 01, ~2, (or g, d12) one finds that contributions from the 
terms corresponding to z and ~?)~/Oz a are cancelled (note these terms have the 
order (e3a)-1/2 relative to the first term). The final expression for A E is 

7 492F (2~-) 
A E =  2 Z 2e 1 A_ A + R e- 2~R I(c~) [1 + 0(l/R)-1 (27) 2 1 / ~ 2 +  1/~ 

where the function 
1 1 3 x - - 1  

I ( e ) = S ( l + x )  2~(1 -x )  2~e ~ dx (28) 
o 

is given in Table 1. 

Table 1. 

c~ I 

0.1 1.171o-, 
0.2 2.3510 3 
0.4 3.7810_2 
0.6 0.101 
0.8 0.168 
1.0 0.231 
1.2 0.287 

Equation (27) is valid if the following conditions are satisfied: R~2/2~  1 
(then the behaviour of wave functions is determined by the exponential term); 
2Rc~ 3 >> 1 (then only the first term of the asymptotic expansion of wave function 
need be retained); as has been shown above, the analogous parameter is used 
for the asymptotic expansion of the exchange interaction. In particular for the 
case of two H atoms we have now the condition R >> 1 (instead of the previous 
one: ~/R >> 1, which has been obtained in Ref. [3]). Note that the values of the 
splitting between singlet (Es) and triplet (Et) states of H 2 obtained by variational 
numerical calculations [6-1 and by the asymptotic method (Et -Es~-1 .65  
�9 R 5/2 e x p ( -  2. R)) are not considerably different from each other even at rather 
small interatomic distances (25 % at R = 3). 

Attempts to obtain the asymptotic expressions for the exchange interaction 
between two atoms with different ionization potentials have been made by 
Smirnov and Chibisov [7], and Uwansky and Voronin [8], and the procedure 
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analogous to [2] has been used. But one can show that the results of I-7, 8] do 
not give an exact asymptotic expansion. The point is that the main contribution 
to the exchange integral (let el < c~2) comes from the region ~ 1/(~2- el) near 
the second atom (in the case cq -- % it comes from the whole region ~ R between 
the atoms). So the expansion parameter would not depend on R and not tend 
to zero when R ~ oe. 

But if ~1 and ~2 are close to each other then for a variety of practical calcu- 
lations one can use the formulas from [7-1 and [8-1 for a - a  exchange integrals. 
The criterion of their validity is that the quantity q = (~2 - el)" R < 1. Then it 
follows from the results of Ref. [7, 8] that an additional term ch(q.  x) appears 
under the integral (28) (where e = (el + ~2)/2) �9 But within the accuracy of the given 
procedure this term can be neglected thus considerably simplifying the analysis 
of the exchange interaction. 

Consider now the interaction between an atom and a molecule, and let the 
corresponding ea and c~m be close to each other. The interaction potential at 
large distances usually is written in the following form (see e.g. the review [9]) 

U (R,x) = C exp [ -  fl(R - 2x)] (29) 

where x is the vibrational coordinate, C and 2 are the parameters of the problem 
and (in accordance with the given theory) fl = aa + e,,(X). Then the perturbation 
(to first order in x; see Ref. I-9]) V(R, x) = x .  c~U(x = O)/c?x which causes vibration 
transitions is 

= x.  C e x p ( -  fiR)[f12 - R ~3~m(0) ] (30) V 
~x ]" 

The usual approach [9] does not take into account the dependence of/3 on 
vibrational coordinate x. 

I thank Dr. E. E. Nikitin and Dr. M. Ja. Ovchinnikova for the discussion of this work. 
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